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NMR Spectroscopy

N.M.R. = Nuclear Magnetic Resonance

Basic Principles

Spectroscopic technique, thus relies on the interaction between material and electromagnetic radiation

The nuclei of all atoms possess a nuclear quantum number, I. (I 0, always multiples of .)

Only nuclei with spin number (I) >0 can absorb/emit electromagnetic radiation.

Even atomic mass & number:  I = 0 (12C, 16O)

Even atomic mass & odd number:  I = whole integer (14N, 2H, 10B)

Odd atomic mass:  I = half integer (1H, 13C, 15N, 31P)

The spinning nuclei possess angular momentum, P, and charge, and so an associated magnetic moment, .

=  x P

Where  is the gyromagnetic ratio
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The spin states of the nucleus are quantified:

 I, (I - 1), (I - 2), … , -I

Basic Principles
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Basic Principles

B
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In the ground state all nuclear spins are disordered, and 
there is no energy difference between them. They are 
degenerate.

Since they have a magnetic moment, when we apply a 
strong external magnetic field (Bo), they orient either 
against or with it:
There is always a small excess of nuclei (population 
excess) aligned with the field than pointing against it.
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Basic Principles
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0 is the Larmor Frequency
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Basic Principles

Each level has a different population (N), and the difference between the two is related 
to the energy difference by the Boltzmman distribution:

N /N  = e E/kT

E for 1H at 400 MHz (B0 = 9.5 T) is 3.8 x 10-5 Kcal/mol

    N /N  =1.000064

 The surplus population is small (especially when compared to UV or IR).

That renders NMR a rather insensitive technique!
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The electromagnetic spectrum
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The Vector Model
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NMR excitation
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Laboratory vs. Rotating frame
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Effect on an rf pulse
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Magnetization properties
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Magnetization properties

1H=400,000,000 Hz
A=400,000,005 Hz
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The Fourier Transform
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The Fourier Transform
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The Fourier Transform
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Continuous wave vs. pulsed NMR
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Continuous wave vs. pulsed NMR

FT 
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Continuous wave vs. pulsed NMR

* =

tp

FT 
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A monochromatic radiofrequency pulse is a combination of a wave 

(cosine) of frequency 0 and a step function 

Since f=1/t, a pulse of 10 s 

duration excites a frequency 
bandwidth of 105 Hz! 
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Continuous wave vs. pulsed NMR

E t ~ h or  t ~1
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Single-channel signal detection
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Quadrature detection

z 

y 

x +

My Mx 

My Mx 



NMR Spectroscopy
Quadrature detection

y 

x +

sin 

cos 

+ - Hz 

0

+ Hz 
0



NMR Spectroscopy
The Chemical Shift

The NMR frequency  of a nucleus in a molecule is mainly determined by its 
gyromagnetic ratio  and the strength of the magnetic field B

The exact value of  depends, however, on the position of the nucleus in the molecule or 
more precisely on the local electron distribution

 this effect is called the chemical shift
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The Chemical Shift

Nuclei, however, in molecules are never isolated from other particles that are charged 
and are in motion (electrons!).  

Thus, the field actually felt by a nucleus is slightly different from that of the applied 
external magnetic field!! 

E=h =h B/2
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The Chemical Shift

E=h =h Be /2

Beff, is given by B0-B = B0-B0 =B0(1- ) 

and  is the chemical shift

 = 

B0(1- ) 

2

= 
( - ref) 

ref 

106  106 ( ref- ) 
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The Chemical Shift

750 MHz 1H spectrum of a small protein 

amide protons

aromatic ring
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The Chemical Shift
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The Chemical Shift
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Nuclear Shielding

diamagnetic contribution

paramagnetic contribution

neighbor anisotropy effect

ring-current effect

electric field effect

solvent effect

= dia + para + nb + rc + ef + solv
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Nuclear Shielding - diamagnetic contribution

The external field B0 causes the electrons to circulate within their orbitals

B0 

B’ 

h B0 h B0(1- ) 

The higher is the electron density close to the nucleus, the larger the protection is!
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Nuclear Shielding - diamagnetic contribution

Depends on the electronegativity

CH3X
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Nuclear Shielding - paramagnetic contribution

The external field B0 mixes the wavefunction of the ground state with that of the excited state

The induced current generates a magnetic field that enhances the external field and deshields the 
nucleus
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Chemical shift range

Local diamagnetic and paramagnetic currents make only modest contributions to 1H shielding!

1H; ~10 ppm 

13C; ~200 ppm 

19F; ~300 ppm 

31P; ~500 ppm 
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Chemical Shift Anisotropy

Nuclear shielding, ,  is a tensor.

The distribution of the electrons about the nucleus is non-sperical- thus, the magnitude of the 
shielding depends on the relative orientation of the nucleus with respect to the static field.

In isotropic cases: =  ( 11 + 22 + 33)

In static cases, e.g. solid state
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Nuclear Shielding - neighboring group
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Nuclear Shielding - neighboring group
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Nuclear Shielding - ring-current effect

More pronounced in aromatic rings due to the  electron clouds
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Nuclear Shielding - hydrogen bonding
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Hydrogen bonding causes deshielding due to electron density decrease at the proton site
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Spin-spin (scalar) coupling

HF (1H-19F)
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Spin-spin (scalar) coupling

HF (1H-19F)
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Spin-spin (scalar) coupling
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Spin-spin (scalar) coupling

Strong coupling – <10|J|
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Spin-spin (scalar) coupling

The principal source of scalar coupling is an indirect interaction mediated by electrons involved in chemical bonding

The magnitude of interaction is proportional to the probability of finding the electron at the nucleus (R=0)

Magnitude in Hz- independent of the external magnetic field

H3C – CH3 125 Hz
H2C – CH2 160 Hz
HC   CH 250 Hz
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Spin-spin (scalar) coupling

Three-bond coupling most useful since it carries information on  dihedral angles

Empirical relationship: the Karplus relation

3J = A + B cos  + C cos2 
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Chemical shifts on the rotating frame
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Spin couplings on the rotating frame
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The basic spin-echo pulse sequence
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Effect of spin echo on chemical shift evolution
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Effect of spin echo on scalar coupling evolution
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Effect of spin echo on scalar coupling evolution
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Water suppression by the Jump and Return method
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Water suppression
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Spin decoupling
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NMR Spectroscopy
The J-modulated spin echo
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The J-modulated spin echo
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The J-modulated spin echo
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1H 
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If  =180J  degrees 

C:  I=1 

CH:  I    cos
CH2:  I    cos2
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The J-modulated spin echo
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Sensitivity enhancement

NMR has poor sensitivity compared to other analytical techniques

The intrinsic sensitivity depends upon the gyromagnetic ratio, 

A greater  contributes to:

a high resonant frequency- large transition energy difference- greater Boltzmann population difference

high magnetic moment and hence a stronger signal 

high rate of precession which induces a greater signal in the detection coil 

So, the strength of NMR signal is proportional to 3 

Noise increases a square-root of observed frequency
} S/N 5/2
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Sensitivity enhancement by polarization transfer

Signal sensitivity enhancement by transferring the greater population differences of high-
 spins onto their spin-coupled low-  partners.

H1 
H2 C2 

C1 

1H-13C spin pair 
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Sensitivity enhancement by polarization transfer

Signal sensitivity enhancement by transferring the greater population differences of high-
 spins onto their spin-coupled low-  partners.
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Sensitivity enhancement by polarization transfer

Signal sensitivity enhancement by transferring the greater population differences of high-
 spins onto their spin-coupled low-  partners.

coupled decoupled INEPT refocused 

INEPT 

refocused, 

decoupled 

INEPT 
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Relaxation

When perturbed, the nuclear spins need to relax to return to their equilibrium distribution

E.g. when the sample is put into a magnet, the Boltzmann distribution of spins among the energy 
levels changes due to a change in the energy of the various levels

E.g. after applying electromagnetic radiation, which induces transitions between energy levels, 
the system returns to its equilibrium

This process is called relaxation
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Longitudinal Relaxation: Establishing Equilibrium
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Longitudinal Relaxation: Establishing Equilibrium

Recovery of the z-magnetization follows exponential behavior 

dMz    (M0-Mz) 

 dt        T1 

= Mz=M0 (1-2e-t/T1) 

where T1 is the longitudinal relaxation time 
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Longitudinal Relaxation: Measurement
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Longitudinal Relaxation: Measurement

x x 
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Longitudinal Relaxation: Exponential growth

Mz=M0 (1-2e-t/T1) 

By the end of 5T1 sec, the magnetization has recovered by 99.33%  
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Longitudinal Relaxation: optimizing sensitivity
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Longitudinal Relaxation: optimizing sensitivity
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Longitudinal Relaxation: optimizing sensitivity

optimum pulse repetition time when using 90º 

Quantitative measurements and integration 
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Transverse Relaxation: magnetization loss in the x-y plane
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Transverse Relaxation: magnetization loss in the x-y plane
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Transverse Relaxation: Measurement
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Transverse Relaxation: Measurement
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T1 vs T2 Relaxation

T1  T2 

For small molecules, T1  T2 

For large molecules, T1 >> T2 

Longitudinal relaxation causes loss of energy from the spins (enthalpic) 

Transverse relaxation occurs by mutual swapping of energy between spins (entropic) 
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Relaxation mechanisms

Dipole-dipole 

Chemical shift anisotropy 

Two main mechanisms 

Nuclear spin relaxation is not a spontaneous process; it requires stimulation by 

suitable fluctuating fields to induce the necessary spin transitions 
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Relaxation mechanisms

Longitudinal relaxation requires a time-dependent magnetic field fluctuating at the Larmor frequency

The time-dependence originates in the motions of the molecule (vibration, rotation, diffusion etc)

Molecules in solution “tumble”. This “tumbling” can be characterized by a rotational correlation time c 

c is the time needed for the rms 
deflection of the molecules to be ~ 1 
radian (60°)
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Spectral density function

Rotational diffusion in solution occurs at a range of frequencies

1/ c ~ rms rotational frequency (radians s-1)

The probability function of finding motions at a given angular frequency  can be described by the 
spectral density function J( )



NMR Spectroscopy
Spectral density function

Frequency distribution of the fluctuating magnetic fields 
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Spectral density function: Longitudinal relaxation

Spins are relaxed by local fields fluctuating at the Larmor frequency 0

So, the relaxation rate (R1) will be proportional to the J( 0)

Knowing the form of J( ) we can predict the dependence of the spin-lattice relaxation time (T1=1/
R1) on the correlation time c for a given NMR frequency 0

1/T1= R1 = 
2 <B2> J( 0) 

0 c>>1 (large molecules), J( 0) ~ 2/ 0
2

c  

and T1 increases (R1 decreases) with  

increasing c (e.g. by decreasing the  

temperature) 

0 c=1 

0 c<<1 
0 c>>1 

0 c=1 ,J( 0) = c= 1/ 0  

and T1 is minimum (R1 maximum) 

0 c<<1 (small molecules), J( 0) ~ 2 c and T1  

decreases (R1 increases) with increasing c  

(e.g.by  decreasing the temperature) 
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Relaxation mechanisms: Dipole-dipole

Nuclei with non-zero quantum numbers have magnetic dipoles 

They  behave like small magnets and induce small magnetic fields that affect neighboring nuclei

Magnetic field, B , generated by a magnetic dipole 
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Relaxation mechanisms: Dipole-dipole

Representation of the dipolar magnetic field B , generated by a magnetic dipole 

lines of force 

Bμz Bμx 

Bμz is zero for =±54.7˚ (magic angle) 

density plots 
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Relaxation mechanisms: Dipole-dipole

The z component of their dipole magnetic field will affect the field experienced by the 
other nucleus and cause splitting

A 

X 

Bμ 
A 

± sign refers to the quantum number of A (± )  

Thus, the splitting in the spectrum of X is  

KAX vary with the distance 

e.g. KCH is 9000 Hz at 1.5 Å and 30 Hz at 10 Å
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Relaxation mechanisms: Dipole-dipole

Splitting of the AX spectrum depends on 

In a crystal with fixed distances and angles the dipolar splitting vary with the crystal 
orientation with respect to the external magnetic field
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Relaxation mechanisms: Dipole-dipole

Molecules in liquids rotate, “tumble” rapidly with typical frequencies between 1012 to 
108 Hz for small molecules and proteins, respectively.

Those frequencies are much larger than typical dipolar couplings (105 Hz)

The angular part of the dipolar splitting is averaged over all possible orientation to 0

Although they are not directly observed in solution, dipolar couplings play an important 
role in spin relaxation

The local field experienced at one nucleus as a result of its neighbor will fluctuate as the 
molecule tumbles
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Relaxation mechanisms: Dipole-dipole

R1 depend of the gyromagnetic ratio of the nuclei (e.g. H-H relaxation more efficient than C-H)
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Relaxation mechanisms: Chemical shift anisotropy

The distribution of the electrons about the nucleus is non-sperical- thus, the magnitude of the 
shielding depends on the relative orientation of the nucleus with respect to the static field.

As the molecule tumbles, it creates a fluctuating magnetic 
field
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Nuclear Overhauser Effect (NOE)

NOE: change in intensity of one resonance when the spin transitions of another are perturbed 
from their equilibrium populations

perturbation: saturation or inversion 

The two spins should “communicate” through dipole-dipole interaction

NOE is observed for spin I when spin S is perturbed
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Nuclear Overhauser Effect (NOE)
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Nuclear Overhauser Effect (NOE)

Six possible transitions in a two-spin system

Only single transitions can by observed by NMR (W1)

W0 and W2 are cross-relaxation pathways, responsible for the NOE
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Nuclear Overhauser Effect (NOE)
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Nuclear Overhauser Effect (NOE)

W1 tends to reduce the magnitude of the NOE 

Saturating for a period of time that is long relative to the relaxation times allows a new 

steady-state of populations to arise 

IS, cross-relaxation rate: dictates the sign of the NOE 

IS, dipolar longitudinal relaxation rate of spin I: it serves to reduce the magnitude 

Thus, NOE is related to molecular motion! 
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Nuclear Overhauser Effect (NOE)

1H at 400 MHz 

W1 at 400 MHz 

W0 at Hz-kHZ   (|WI-WS|)- stimulated by slowly tumbling molecules  

W2 at 800 MHz (WI+WS)- stimulated by rapidly tumbling molecules 

Large molecules exhibit negative NOEs 

Small molecules exhibit positive NOEs 
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Nuclear Overhauser Effect (NOE)

c
=1.12 

Variation in NOE as a function of molecular tumbling rates
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Field gradient

Bg 

Variation of magnetic field strength along the z axis
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Field gradient

90º -Bg, !g 

-!Bg 

+!B
g 

refocused 

(rephased) 

Bg, !g 

+!Bg 

-!Bg 

defocused 

(dephased) 



NMR Spectroscopy
Field gradient

x 

RF 

Gz 

stronger gradient 



NMR Spectroscopy
Field gradient
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Variation of the second gradient pulse (90 to 110% of the first) 
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Diffusion-ordered spectroscopy
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Diffusion-ordered spectroscopy

mobility 
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Multi-dimensional NMR

One dimension

Two dimensions
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Multi-dimensional NMR

To generate a spectrum with two frequency domains, f1 and f2, it is necessary to sample 

data as a function of two separate time variables, t1 and t2. 

P M E 

t1 t2 

D 

P: Preparation 

E: Evolution 
M: Mixing 

D: Detection 

General scheme for 2D NMR experiment 
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Multi-dimensional NMR
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hv 
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Multi-dimensional NMR
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COSY (COrrelated SpectroscopY) 

Correlation through bonds (J-coupling)
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TOCSY (Total COrrelated SpectroscopY)

Correlation through bonds (J-coupling)
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Correlation through bonds (J-coupling)

COSY 

TOCSY 

COSY vs. TOCSY
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COSY vs. TOCSY

Correlation through bonds (J-coupling)
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General schemes for 2D NMR
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Heteronuclear Single Quantum Coherence (HSQC)

1H

13C
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Protein NMR

2D NOESY
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Protein NMR

2D NOESY
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Protein NMR

Isotopically labeled proteins
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Protein NMR

1H-15N HSQC (protein’s fingerprint)

15N 

1H 
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Protein NMR

Signal overlap problem alleviated by 3D & 4D NMR
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Protein NMR

Signal overlap problem alleviated by 3D & 4D NMR
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Protein NMR

Signal overlap problem alleviated by 3D & 4D NMR
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Protein NMR

Signal overlap problem alleviated by 3D & 4D NMR



NMR Spectroscopy
Protein NMR

Assignment - Triple Resonance Experiments
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Protein NMR

Assignment - Triple Resonance Experiments
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Protein NMR

Assignment - Triple Resonance Experiments

1H ppm 

6.5 6.2 7.0 7.2 7.8 8.5 8.0 

40 

45 

50 

55 

13C ppm 

115 
15N ppm 118 122 125 116 130 128 



NMR Spectroscopy
Protein NMR

Assignment - Triple Resonance Experiments

� 
 � � � � � � � �

� �

� �

� �

� � � �� �

� �

� �

� �

� �

� �

� �

� � � �� �

� �

� �

� �

� �

� �

� �

� � � �� �

� �

� �

� �

� �

� �

� �

� � � �� �

� �

� �

� 
 � � � � � � � � � �


 � 	 � 
 � 	 �

� � �

� 	 �

	 � �

	 	 �

� � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �



NMR Spectroscopy
Protein NMR

Assignment - Triple Resonance Experiments

8.5 8.5 

40 

45 

50 

55 

130 ppm 130 ppm 

HNCA HN(CO)CA 

i-1 

7.5 7.5 

40 

45 

50 

55 

125 ppm 125 ppm 

HNCA HN(CO)CA 

i 

7.5 7.5 

40 

45 

50 

55 

125 ppm 125 ppm 

HNCA HN(CO)CA 

i+1 


